Markov Chain Monte Carlo Sampling using Direct Search Optimization
نویسندگان
چکیده
منابع مشابه
Optimization assisted MCMC
Markov Chain Monte Carlo (MCMC) sampling methods are widely used but often encounter either slow convergence or biased sampling when applied to multimodal high dimensional distributions. In this paper, we present a general framework of improving classical MCMC samplers by employing a global optimization method. The global optimization method first reduces a high dimensional search to an one dim...
متن کاملPopulation Based Particle Filtering
This paper proposes a novel particle filtering strategy by combining population Monte Carlo Markov chain methods with sequential Monte Carlo chain particle which we call evolving population Monte Carlo Markov Chain (EP MCMC) filtering. Iterative convergence on groups of particles (populations) is obtained using a specified kernel moving particles toward more likely regions. The proposed techniq...
متن کاملMetropolis Sampling
Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techn...
متن کاملJointly Distributed Mean and Mixing Coefficients for Bayesian Source Separation using MCMC and ICM
Recent source separation work has described a model which assumes a nonzero overall mean and incorporates prior knowledge regarding it. This is significant because source separation models that have previously been presented, have assumed that the overall mean is zero. However, this work specified that the prior distribution which quantifies available prior knowledge regarding the overall mean ...
متن کاملThe Markov Chain Monte Carlo Approach to Importance Sampling in Stochastic Programming
Stochastic programming models are large-scale optimization problems that are used to facilitate decision-making under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs of current decisions, often referred to as the recourse function. In practice, this calculation is computationally difficult as it involves the evaluation of a multidimensional inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002